Refine Your Search

Topic

Author

Search Results

Technical Paper

Fuel Economy Improvement During Cold Start Using Recycled Exhaust Heat and Electrical Energy for Engine Oil and ATF Warm-Up

2014-04-01
2014-01-0674
A numerical study is conducted to investigate the effect of changing engine oil and automatic transmission fluid (ATF) temperatures on the fuel economy during warm-up period. The study also evaluates several fuel economy improving devices that reduce the warm-up period by utilizing recycled exhaust heat or an electric heater. A computer simulation model has been developed using a multi-domain 1-D commercial software and calibrated using test data from a passenger vehicle equipped with a 2.4 / 4-cylinder engine and a 6-speed automatic transmission. The model consists of sub-models for driver, vehicle, engine, automatic transmission, cooling system, engine oil circuit, ATF circuit, and electrical system. The model has demonstrated sufficient sensitivity to the changing engine oil and ATF temperatures during the cold start portion of the Federal Test Procedure (FTP) driving cycle that is used for the fuel economy evaluation.
Journal Article

In-Cylinder Particulate Matter and Spray Imaging of Ethanol/Gasoline Blends in a Direct Injection Spark Ignition Engine

2013-04-08
2013-01-0259
A single-cylinder Direct Injection Spark Ignition (DISI) engine with optical access was used to investigate the effects of ethanol/gasoline blends on in-cylinder formation of particulate matter (PM) and fuel spray characteristics. Indolene was used as a baseline fuel and two blends of 50% and 85% ethanol (by volume, balance indolene) were investigated. Time resolved thermal radiation (incandescence/natural luminosity) of soot particles and fuel spray characteristics were recorded using a high speed camera. The images were analyzed to quantify soot formation in units of relative image intensity as a function of important engine operating conditions, including ethanol concentration in the fuel, fuel injection timing (250, 300 and 320° bTDC), and coolant temperature (25°C and 90°C). Spatially-integrated incandescence was used as a metric to quantify the level of in-cylinder PM formed at the different operating conditions.
Technical Paper

Validation of an EFEA Formulation for Computing the Vibrational Response of Complex Structures

2007-05-15
2007-01-2324
This paper presents a validation case study for an Energy Finite Element Analysis (EFEA) formulation through comparison to test data. The EFEA comprises a simulation tool for computing the structural response of a complex structure and the amount of the radiated power. The EFEA formulation presented in this paper can account for periodic stiffeners, for partial fluid loading effects on the outer part of the structure, and for internal compartments filled with heavy fluid. In order to validate these modeling capabilities of the EFEA two 1/8th scale structures representing an advanced double hull design and a conventional hull design of a surface ship are analyzed. Results for the structural vibration induced on the outer bottom part of the structure are compared to available test data. The excitation is applied at two different locations of the deck structure. Good correlation is observed between the numerical results and the test data.
Technical Paper

Simultaneous Reduction of NOX and Soot in a Heavy-Duty Diesel Engine by Instantaneous Mixing of Fuel and Water

2007-04-16
2007-01-0125
Meeting diesel engine emission standards for heavy-duty vehicles can be achieved by simultaneous injection of fuel and water. An injection system for instantaneous mixing of fuel and water in the combustion chamber has been developed by injecting water in a mixing passage located in the periphery of the fuel spray. The fuel spray is then entrained by water and hot air before it burns. The experimental work was carried out on a Rapid Compression Machine and on a Komatsu direct-injection heavy-duty diesel engine with a high pressure common rail fuel injection system. It was also supported by Computational Fluid Dynamics simulations of the injection and combustion processes in order to evaluate the effect of water vapor distribution on cylinder temperature and NOX formation. It has been concluded that when the water injection is appropriately timed, the combustion speed is slower and the cylinder temperature lower than in conventional diesel combustion.
Technical Paper

Pressure Reactive Piston Technology Investigation and Development for Spark Ignition Engines

2005-04-11
2005-01-1648
Variable Compression Ratio (VCR) technology has long been recognized as a method of improving Spark Ignition (SI) engine fuel economy. The Pressure Reactive Piston (PRP) assembly features a two-piece piston, with a piston crown and separate piston skirt which enclose a spring set between them. The unique feature is that the upper piston reacts to the cylinder pressure, accommodating rapid engine load changes passively. This mechanism effectively limits the peak pressures at high loads without an additional control device, while allowing the engine to operate at high compression ratio during low load conditions. Dynamometer engine testing showed that Brake Specific Fuel Consumption (BSFC) improvement of the PRP over the conventional piston ranged from 8 to 18 % up to 70% load. Knock free full load operation was also achieved. The PRP equipped engine combustion is characterized by reverse motion of the piston crown near top dead center and higher thermal efficiency.
Technical Paper

Evaluation of a Narrow Spray Cone Angle, Advanced Injection Timing Strategy to Achieve Partially Premixed Compression Ignition Combustion in a Diesel Engine

2005-04-11
2005-01-0167
Simultaneous reduction of nitric oxides (NOx) and particulate matter (PM) emissions is possible in a diesel engine by employing a Partially Premixed Compression Ignition (PPCI) strategy. PPCI combustion is attainable with advanced injection timings and heavy exhaust gas recirculation rates. However, over-advanced injection timing can result in the fuel spray missing the combustion bowl, thus dramatically elevating PM emissions. The present study investigates whether the use of narrow spray cone angle injector nozzles can extend the limits of early injection timings, allowing for PPCI combustion realization. It is shown that a low flow rate, 60-degree spray cone angle injector nozzle, along with optimized EGR rate and split injection strategy, can reduce engine-out NOx by 82% and PM by 39%, at the expense of a modest increase (4.5%) in fuel consumption.
Technical Paper

New Heat Transfer Correlation for an HCCI Engine Derived from Measurements of Instantaneous Surface Heat Flux

2004-10-25
2004-01-2996
An experimental study has been carried out to provide qualitative and quantitative insight into gas to wall heat transfer in a gasoline fueled Homogeneous Charge Compression Ignition (HCCI) engine. Fast response thermocouples are embedded in the piston top and cylinder head surface to measure instantaneous wall temperature and heat flux. Heat flux measurements obtained at multiple locations show small spatial variations, thus confirming relative uniformity of in-cylinder conditions in a HCCI engine operating with premixed charge. Consequently, the spatially-averaged heat flux represents well the global heat transfer from the gas to the combustion chamber walls in the premixed HCCI engine, as confirmed through the gross heat release analysis. Heat flux measurements were used for assessing several existing heat transfer correlations. One of the most popular models, the Woschni expression, was shown to be inadequate for the HCCI engine.
Technical Paper

Effect of Exhaust Valve Timing on Gasoline Engine Performance and Hydrocarbon Emissions

2004-10-25
2004-01-3058
Despite remarkable progress made over the past 30 years, automobiles continue to be a major source of hydrocarbon emissions. The objective of this study is to evaluate whether variable exhaust valve opening (EVO) and exhaust valve closing (EVC) can be used to reduce hydrocarbon emissions. An automotive gasoline engine was tested with different EVO and EVC timings under steady-state and start-up conditions. The first strategy that was evaluated uses early EVO with standard EVC. Although exhaust gas temperature is increased and catalyst light-off time is reduced, the rapid drop in cylinder temperature increases cylinder-out hydrocarbons to such a degree that a net increase in hydrocarbon emissions results. The second strategy that was evaluated uses early EVO with early EVC. Early EVO reduces catalyst light-off time by increasing exhaust gas temperature and early EVC keeps the hydrocarbon-rich exhaust gas from the piston crevice from leaving the cylinder.
Technical Paper

Metamodel Development Based on a Nonparametric Isotropic Covariance Estimator and Application in a V6 Engine

2004-03-08
2004-01-1142
This paper presents the utilization of alternative correlation functions in the Kriging method for generating surrogate models (metamodels) for the performance of the bearings in an internal combustion engine. Originally, in the Kriging method an anisotropic exponential covariance function is developed by selecting optimal correlation parameters through optimization. In this paper an alternative nonparametric isotropic covariance approach is employed instead for generating the correlation functions. In this manner the covariance for spatial data is evaluated in a more straightforward manner. The metamodels are developed based on results from a simulation solver computed at a limited number of sample points, which sample the design space.
Technical Paper

Probabilistic Computations for the Main Bearings of an Operating Engine Due to Variability in Bearing Properties

2004-03-08
2004-01-1143
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine. The metamodels are employed for performing probabilistic analyses for the engine bearings. The metamodels are developed based on results from a simulation solver computed at a limited number of sample points, which sample the design space. An integrated system-level engine simulation model, consisting of a flexible crankshaft dynamics model and a flexible engine block model connected by a detailed hydrodynamic lubrication model, is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space.
Technical Paper

Probabilistic Analysis for the Performance Characteristics of Engine Bearings due to Variability in Bearing Properties

2003-05-05
2003-01-1733
This paper presents the development of surrogate models (metamodels) for evaluating the bearing performance in an internal combustion engine without performing time consuming analyses. The metamodels are developed based on results from actual simulation solvers computed at a limited number of sample points, which sample the design space. A finite difference bearing solver is employed in this paper for generating information necessary to construct the metamodels. An optimal symmetric Latin hypercube algorithm is utilized for identifying the sampling points based on the number and the range of the variables that are considered to vary in the design space. The development of the metamodels is validated by comparing results from the metamodels with results from the actual bearing performance solver over a large number of evaluation points. Once the metamodels are established they are employed for performing probabilistic analyses.
Technical Paper

An Experimental Assessment of Turbulence Production, Reynolds Stress and Length Scale (Dissipation) Modeling in a Swirl-Supported DI Diesel Engine

2003-03-03
2003-01-1072
Simultaneous measurements of the radial and the tangential components of velocity are obtained in a high-speed, direct-injection diesel engine typical of automotive applications. Results are presented for engine operation with fuel injection, but without combustion, for three different swirl ratios and four injection pressures. With the mean and fluctuating velocities, the r-θ plane shear stress and the mean flow gradients are obtained. Longitudinal and transverse length scales are also estimated via Taylor's hypothesis. The flow is shown to be sufficiently homogeneous and stationary to obtain meaningful length scale estimates. Concurrently, the flow and injection processes are simulated with KIVA-3V employing a RNG k-ε turbulence model. The measured turbulent kinetic energy k, r-θ plane mean strain rates ( 〈Srθ〉, 〈Srr〉, and 〈Sθθ〉 ), deviatoric turbulent stresses , and the r-θ plane turbulence production terms are compared directly to the simulated results.
Technical Paper

Fuel Spray Simulation of High-Pressure Swirl-Injector for DISI Engines and Comparison with Laser Diagnostic Measurements

2003-03-03
2003-01-0007
A comprehensive model for sprays emerging from high-pressure swirl injectors in DISI engines has been developed accounting for both primary and secondary atomization. The model considers the transient behavior of the pre-spray and the steady-state behavior of the main spray. The pre-spray modeling is based on an empirical solid cone approach with varying cone angle. The main spray modeling is based on the Liquid Instability Sheet Atomization (LISA) approach, which is extended here to include the effects of swirl. Mie Scattering, LIF, PIV and Laser Droplet Size Analyzer techniques have been used to produce a set of experimental data for model validation. Both qualitative comparisons of the evolution of the spray structure, as well as quantitative comparisons of spray tip penetration and droplet sizes have been made. It is concluded that the model compares favorably with data under atmospheric conditions.
Technical Paper

Investigation of the Fuel Injection, Mixing and Combustion Processes in an SIDI Engine using Quasi-3D LIF Imaging

2003-03-03
2003-01-0068
The influence of the bulk in-cylinder flow on the spray evolution, evaporation, fuel-air mixing and subsequent flame propagation has been studied in an optical SIDI engine. Quantitative LIF imaging of equivalence ratios was used to characterize the mixture formation and the influence of the local equivalence ratio at the time of spark on the flame propagation. Two extreme bulk flow conditions - high and low swirl - were investigated and pronounced differences in mixture homogeneity and flame propagation were found and characterized.
Technical Paper

Estimation of Air Fuel Ratio of a SI Engine from Exhaust Gas Temperature at Cold Start Condition

2002-05-06
2002-01-1667
Wall wetting of injected fuel onto the intake manifold and cylinder wall causes unpredictable transient behavior of air-fuel mixing which results in a significant emission of unburned hydrocarbon (HC) emission during cold start operation. Heated exhaust gas oxygen (HEGO) sensors cannot measure the air-fuel ratio (A/F) of exhaust gas during cold start condition. Precise and fast estimation of air/fuel ratio of the exhaust gas is required to elucidate the wall wetting phenomena and subsequent HC formation. Refined A/F estimation can enable the control of fuel injection minimizing HC emissions during cold start conditions so that HC emissions can be minimized. A new estimator for A/F of the exhaust gas has been developed. The A/F estimator described in this study utilizes measured exhaust gas temperature and general engine parameters such as engine speed, airflow, coolant temperature, etc.
Technical Paper

The Evolution of Flow Structures and Turbulence in a Fired HSDI Diesel Engine

2001-09-24
2001-01-3501
In-cylinder fluid velocity is measured in an optically accessible, fired HSDI engine at idle. The velocity field is also calculated, including the full induction stroke, using multi-dimensional fluid dynamics and combustion simulation models. A detailed comparison between the measured and calculated velocities is performed to validate the computed results and to gain a physical understanding of the flow evolution. Motored measurements are also presented, to clarify the effects of the fuel injection process and combustion on the velocity field evolution. The calculated mean in-cylinder angular momentum (swirl ratio) and mean flow structures prior to injection agree well with the measurements. Modification of the mean flow by fuel injection and combustion is also well captured.
Technical Paper

Overview of Techniques for Measuring Friction Using Bench Tests and Fired Engines

2000-06-19
2000-01-1780
This paper presents an overview of techniques for measuring friction using bench tests and fired engines. The test methods discussed have been developed to provide efficient, yet realistic, assessments of new component designs, materials, and lubricants for in-cylinder and overall engine applications. A Cameron-Plint Friction and Wear Tester was modified to permit ring-in-piston-groove movement by the test specimen, and used to evaluate a number of cylinder bore coatings for friction and wear performance. In a second study, it was used to evaluate the energy conserving characteristics of several engine lubricant formulations. Results were consistent with engine and vehicle testing, and were correlated with measured fuel economy performance. The Instantaneous IMEP Method for measuring in-cylinder frictional forces was extended to higher engine speeds and to modern, low-friction engine designs.
Technical Paper

Modeling Fully-Coupled Rigid Engine Dynamics and Vibrations

1999-05-17
1999-01-1749
The internal combustion (IC) engine is an important source of vibration in many vehicles, and understanding its dynamic response to demands from both the vehicle operator and the terrain is essential to proper engine and mount design and optimization. Development of an engineering tool for understanding this dynamic response and the resulting forces transmitted from the engine block to the supporting structure is a priority in both commercial and military engine applications. Ideally, engine dynamics and vibration would be directly simulated through effective and efficient analytical and computational models of both the internal engine component dynamics as well as engine block vibrations. The present analytical study was undertaken to produce a comprehensive and efficient rigid-body engine dynamics and vibration model which predicts engine block motion, engine mount load transmission, as well as instantaneous engine crankshaft rotational speed.
Technical Paper

Simulation of Combustion in Direct-Injection Low Swirl Heavy-Duty Type Diesel Engines

1999-03-01
1999-01-0228
A two phase, global combustion model has been developed for quiescent chamber, direct injection diesel engines. The first stage of the model is essentially a spark ignition engine flame spread model which has been adapted to account for fuel injection effects. During this stage of the combustion process, ignition and subsequent flame spread/heat release are confined to a mixing layer which has formed on the injected jet periphery during the ignition delay period. Fuel consumption rate is dictated by mixing layer dynamics, laminar flame speed, large scale turbulence intensity, and local jet penetration rate. The second stage of the model is also a time scale approach which is explicitly controlled by the global mixing rate. Fuel-air preparation occurs on a large-scale level throughout this phase of the combustion process with each mixed fuel parcel eventually burning at a characteristic time scale as dictated by the global mixing rate.
Technical Paper

Comparative Life Cycle Assessment of Plastic and Steel Vehicle Fuel Tanks

1998-11-30
982224
Federal standards that mandate improved fuel economy have resulted in the increased use of lightweight materials in automotive applications. However, the environmental burdens associated with a product extend well beyond the use phase. Life cycle assessment is the science of determining the environmental burdens associated with the entire life cycle of a given product from cradle-to-grave. This report documents the environmental burdens associated with every phase of the life cycle of two fuel tanks utilized in full-sized 1996 GM vans. These vans are manufactured in two configurations, one which utilizes a steel fuel tank, and the other a multi-layered plastic fuel tank consisting primarily of high density polyethylene (HDPE). This study was a collaborative effort between GM and the University of Michigan's National Pollution Prevention Center, which received funding from EPA's National Risk Management Research Laboratory.
X